
Security & Umbraco

Jeffrey Schoemaker – jeffrey@perplex.nl

Thought experiment

▪ How would I hack into someone’s

Umbraco website?

▪ Sharing my thoughts so you can

reconsider your security strategy

Today’s goal

▪ Education

▪ Increase security awareness

▪ Tips for hardening your Umbraco
website

We do not want this!

▪ Jeffrey Schoemaker
• Umbraco MVP 2017 & 2018

• Security & Umbraco - enthousiast

▪ Webdeveloper / co-owner Perplex
• Digital & Marketing agency in the Netherlands

• Umbraco Gold Partner

• Two Umbraco MVP’s

• A few packages
• Umbraco Forms Perplex on Steroids

• Perplex Security & GDPR package

• PerplexMail

• Perplex Kraken Image Optimizer

Who am I?

Defense in Depth

▪ Multiple layers of defense

▪ If one fails, there are more layers to protect you

Secure your Umbraco installation

Before After!

Our hacking approach

1. Footprint & Identification

2. Getting into Umbraco

3. In Umbraco – Privilege escalation

4. Clearing our tracks

Agenda

▪Encryption

▪Umbraco settings

▪Hardening your Umbraco

▪9 concrete tips that you can implement right

away!

Sidesteps

Level 1

Footprint & Identification

Mission 1

▪ Goal: Get as much information on the
website as possible

▪ Approach: Looking at specifics of the
website

▪ We want to use this information in level
2 to try to exploit specific vulnerabilities
in specific versions

Footprint & Identification

▪ Most important part of hacking

▪ Stay under the radar

▪ Generate no noise & trigger no Intrusion

Detection System

Mission 1.1

▪ Goal: Determine if it’s Umbraco

▪ Approach: Search for Umbraco-specific

characteristics

On the homepage

▪ No easy way to identify Umbraco

▪ Total freedom of output

Go to /umbraco/

Or.. Like this

After Umbraco 4 we somehow lost

the version numbering

#donttalkaboutV5

Or even like this

▪ Umbraco is exposed to the whole world!

▪ Everyone gets a few shots on accessing

your website... Isn’t that weird?

Publicly available on
most websites

<!– Hardening tip 1-->

IP whitelist your /umbraco/ using

IIS Rewrite

<!– END Hardening tip 1 -->

Result: Significant reduction in attack surface

<!– Hardening tip 1-->

Use an IISRewrite.config file

<!– END Hardening tip 1 -->

▪ Get the IP addresses of your client

▪ Whitelist them in your IIS

Rewrite.config

▪ If your client cannot provide one range,

or has a dynamic IP-range, restrict

access by country

IISRewrite.config

And then it looks like this

We get a 403 response

▪ So now we know that there is something

▪ And we are not allowed to see it

<!– Hardening tip 2-->

Rename your Umbraco-folder

<!– END Hardening tip 2 -- >

Change folder on disk and two web.config
settings

Hide your Umbraco-path

▪ Change these values in your web.config

▪ Rename your /umbraco/-folder on disk

Rename it to
/my-secret-loginpanel/

▪ Change these values in your web.config

▪ Rename the folder on disk

Mission 1.2

▪ Goal: Determine whether it’s

Umbraco, even when the Umbraco

folder is renamed

▪ Approach: Find other characteristics of

Umbraco

A clean Umbraco
folder structure

▪ Files not served by

IIS webserver (by

default)
• .asax

• .config

• .csproj

Other folders?

Footprinting & Identification

▪ Folders not served

by IIS (by default)
• App_Browsers

• App_Data

• bin

▪ Empty folders
• Media

• Obj

• Properties

• Views

Leaves us with...

▪ /App_Plugins/

▪ /Config/

▪ /Umbraco_client/

/Config/-folder

Aah... Only .config files

But wait!

Javascript?

That must be Umbraco!

Mission 1.3

▪ Goal: What version of Umbraco is being

used

▪ Approach: Looking at specifics of that

version

Looking at the login screens

7.0 7.1 - 7.4 7.5

7.6 7.7 7.8 / 7.10

But that would be quite hard...

▪ Is there are better a way?

We could...

▪ Look for specific files and their contents

▪ Each new feature in a version requires

language keys

▪ Crawl /umbraco/config/lang/en.xml

7.5 introduced ‘Forgot password’

7.7 introduced Nested Content to the core

7.9 introduced ‘Sensitive data’

If /Umbraco/ is unavailable...

▪ Use another file:

• /umbraco_client/Application/Extensions.js

• /umbraco_client/Application/

UmbracoApplicationActions.js

Now we know the specific version!

Mission 1.4

▪ Goal: Discover installed packages

▪ Approach: Look for specific package

characteristics

Umbraco Forms

Archetype

Multi Url Picker

Mission 1.4 accomplished

▪ We can detect specific Umbraco packages

▪ Hooray!

<!– Hardening tip 3-->

Stop leaking crucial information!

Use IIS Rewrite IP Whitelisting

on the following folders as well:

▪App_Plugins

▪Config

▪Umbraco_Client

<!– END Hardening tip 3 -- >

These folders are only used by authenticated Umbraco
users

Automate it!

https://www.perplex.nl/is-it-umbraco/

Version info

▪ Identified more than 5,000 Umbraco

websites (according to the numbers only 1% of the total

population online)

▪ Looking at the version and the installed

packages

UMBRACO FORMS

ARCHETYPE

RJP.MULTIURLPICKER

NESTED CONTENT

DIPLO TRACE LOG VIEWER

USYNC

LEBLENDER

CMSIMPORT

SPECTRUM COLOUR PICKER

ROBOTS.TXT EDITOR

UMBRACO CONTOUR

LINK PICKER

VORTO

DOC TYPE GRID EDITOR

SEO CHECKER

ARTICULATE

THE DASHBOARD

AZURE FILE SYSTEM PROVIDERS

ANGULARGOOGLEMAPS

OPTIMUS

UEDITORNOTES

DIPLO GOD MODE

UMBRACO FORMS ON PERPLEX STEROIDS

BELLE ICON PACK

UCOMMERCE

OEMBED PICKER

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Most used packages

Usages

Now we know the installed
packages

Mission 1.5

▪ Goal: Get into the website via a detour

▪ Approach: Look for other websites on

the same server & gather information

there

Horizontal pivotting

▪ If you can’t get direct access your target

website

▪ Maybe other websites on the same server

can be used to gain access to the target

website

Tooling: IPNeighbour.com

Mission 1:
Accomplished

We’ve got
Umbraco version

Umbraco packages

Websites on the same server

Level 2

Getting into Umbraco

Mission 2

▪ Goal: Get into Umbraco

▪ Approach 1: Exploit known

vulnerabilities

What is wrong with leaking
this information?

▪ Can we use it to succeed in mission 2?

▪ Or is it just irrelevant information?

Software & hardware systems
have known vulnerabilities

▪ In current or older versions

▪ Tracked in CVE-databases
• Common Vulnerabilities & Exposures

▪ Vulnerability scanners use these to test

your website

Umbraco vulnerabilities

▪ According to umbraco.com/security

Umbraco Forms
vulnerabilities

Last week’s Umbraco
Forms notice

Online CVE - databases

▪ https://vimeo.com/205564261/02bfa2680d

<!– Hardening tip 4-->

Always upgrade your CMS &

your modules

<!– END Hardening tip 4 -- >

Recommended advice by Umbraco...

But do we listen?

▪ Who does not patch or upgrade

their website(s)?

But do we listen?

▪ Who feels guilty about that?

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

7.10 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.1 6.0 4.11 4.9 4.8 4.7 4.6 4.5 4.0 3.0 2.0

Umbraco versions – based on 5,000 crawled Umbraco websites

Usages

Mission 2: Failure

Not (easily) possible to get into Umbraco

When you’ve patched your installations

Let’s take another approach

Mission 2b

▪ Goal: Get into Umbraco

▪ Approach 2:
• Create a cool package that everyone wants to

use

• Insert an exploit that gives us access

A cool package

▪ Perplex Forms on Steroids package

▪ Open source, can be reviewed for

malicious code

Code check

Ok, it’s safe
Let’s download it

But...

▪ Who says the uploaded package is the

same as the uploaded sourcecode?

▪ May be it contains some code like this...

Create a password that always works

Official Umbraco Guidelines

<!– Hardening tip 5-->

Compile packages yourself?

<!– END Hardening tip 5 -- >

I am not sure

about this...

But be aware of the

possible impacts

Mission 2:
Accomplished

Exploit known vulnerabilities in

specific versions

Create your own exploit

Level 3

Privilege escalation

Privilege escalation

The act of exploiting a bug, design flaw or

configuration oversight in an operating

system or software application to gain

elevated access to resources that are

normally protected from an application or

user. The result is that an application with

more privileges than intended by the

application developer or system

administrator can perform unauthorized

actions.

Thank you, wikipedia

So...

▪ We have access to Umbraco, but we

want more access

Mission 3.1:

▪ Goal: Get more privileges within

Umbraco

▪ Approach: Social engineering

Case 1: Meet Mike,
our happy trainee

▪ Mike helps editing the site

▪ It’s a complex website

▪ No property descriptions

in Umbraco

Some of the datatypes

Mike is so helpful..
“Shall I add some descriptions to your properties so

everyone can work with your Umbraco install?”

“Wow, would you do that for us?”

“Of course, no problem. Please give me access to

Settings section so I can edit your documenttypes”

“Oh, and BTW. Please do it on production

because we don’t have a way to transfer

document types from development to

production..”

What a nice guy!

▪ Or is he?

But ...

We also gave Mike access to Templates &

Scripts

Outputting the connectionstring

Adding an user?

<!– Hardening tip 6-->

In production, only give your

website write permissions to

/App_Data/

/Media/

On the other folders only read

permissions

<!– END Hardening tip 6 -- >

Mission 3.2:

▪ Goal: Extract crucial data from the

database

▪ Approach: SQL Injection or any other

means to extract data through SQL

commands

Mike is a smart guy...

▪ He gained access to the database and

he’s looking for the data in the table

SecretInfoTable

SELECT * FROM [SecretInfoTable]

<!– Hardening tip 7-->

Store your sensitive data

encrypted in the database

<!– END Hardening tip 7 -- >

Yet another line of defense

Encrypting – Three options

▪ Offered out of the box by MS SQL Server
• Transparent Data Encryption

• Always Encrypted

▪ The hard way
• ‘Manual’ data encryption

Option 1 - Transparent Data
Encryption

▪ Is used to encrypt the .mdf and .ldf files on disk

▪ And to encrypt the backup as well

Option 1 - Transparent Data
Encryption

Option 1 - Transparent Data
Encryption

▪ This will not help against any SQL Injection

SELECT * FROM [SecretInfoTable]

Option 2 - Always Encrypted
(MS SQL)

▪ Enables encryption on columns

▪ On a per-user basis

Option 2 - Always Encrypted

Won’t work on text and ntext columns

The database administator will see this

But the website user (and Mike) still sees

Option 3 – Manual encryption

▪ Encrypt data in .NET before storing it in

your database

▪ Decryption only possible via C#-code

SQL Injection is useless

▪ SELECT * FROM [SecretInfoTable]

Mission 3:
Accomplished

Gain access to Umbraco

Extracted the data from the database

Level 4

Clearing our tracks

Mission 4.1

▪ Goal: Remove our presence on the

filesystem

▪ Approach: Clearing every trace we’ve

made with our name on it on the

webserver

Some forensics

▪ Umbraco registers all login attempts

to your website

Some forensics

▪ /App_Data/Logs

Cleanup the files on disk

▪ In the command line

D:\>findstr /V /R “evillogon@perplex.nl"

UmbracoTraceLog.MyMachine.original.txt >

UmbracoTraceLog.MyMachine.cleaned.txt

<!– Hardening tip 8-->

Do not store logs only on disk

which can be easily edited by the

website-user

Store it in the

Windows Event Viewer

<!– END Hardening tip 8 -- >

Add these lines in your /config/log4net.config

Windows Event Viewer

Windows Event Viewer

▪ You cannot remove single lines out of the log
• Only flush the whole log (and that is suspicious)

▪ Automatically copy it to a external server

Mission 4.2

▪ Goal: Remove our presence in the

database

▪ Approach: Clearing every trace we’ve

made with our name on it on the

databaseserver

More forensics –
In the database

▪ Access to Umbraco is logged on

several places
• umbracoUser

In the database

▪ Access to Umbraco is logged on several places
• umbracoUserLogin

In the database

▪ Access to Umbraco is logged on several places
• umbracoAudit

But...

▪ We’ve inserted data into the database

before, so we can also delete entries from

the Umbraco-database and hide our

tracks...

<!– Hardening tip 9-->

Restrict database CRUD

permissions by default

Allow Read, Update and Delete only

on some tables

<!– END Hardening tip 9 -- >

Clearing these tables is a dbo-task, not a website task

Mission 4:
Accomplished

Cleared our presence on the

webserver

Removed ourselves from the

databaseserver

All hardening tips

▪ Tip 1: Use IP-whitelisting on the Umbraco-folder

▪ Tip 2: Rename the Umbraco-folder

▪ Tip 3: IP-whitelist /config/, /App_Plugins/ and /Umbraco_Client

▪ Tip 4: Upgrade Umbraco & your plugins

▪ Tip 5: Compile the packages yourself?

▪ Tip 6: In production, give read-only permissions on most folders

▪ Tip 7: Encrypt sensitive data in the database

▪ Tip 8: Store security related logs in the Event Viewer

▪ Tip 9: Minimize CRUD-permissions on your database tables

We have a more secure application!

“ Don’t outrun the bear,
outrun your friends ”

<!-- Security -->

Want more?

▪ Always check the documentation

▪ Umbraco.com/security

▪ Follow me on Twitter
• @jschoemaker1984

▪ Umbraco security training or audit?
• Drop me an email (jeffrey@perplex.nl)

Questions?

Thank you!

Have a secure day!
Than k you !

Have a secure day!

